Unravelling the metabolic impact of SBS-associated microbial dysbiosis: Insights from the piglet short bowel syndrome model

نویسندگان

  • Prue M. Pereira-Fantini
  • Sean G. Byars
  • James Pitt
  • Susan Lapthorne
  • Fiona Fouhy
  • Paul D. Cotter
  • Julie E. Bines
چکیده

Liver disease is a major source of morbidity and mortality in children with short bowel syndrome (SBS). SBS-associated microbial dysbiosis has recently been implicated in the development of SBS-associated liver disease (SBS-ALD), however the pathological implications of this association have not been explored. In this study high-throughput sequencing of colonic content from the well-validated piglet SBS-ALD model was examined to determine alterations in microbial communities, and concurrent metabolic alterations identified in urine samples via targeted mass spectrometry approaches (GC-MS, LC-MS, FIA-MS) further uncovered impacts of microbial disturbance on metabolic outcomes in SBS-ALD. Multi-variate analyses were performed to elucidate contributing SBS-ALD microbe and metabolite panels and to identify microbe-metabolite interactions. A unique SBS-ALD microbe panel was clearest at the genus level, with discriminating bacteria predominantly from the Firmicutes and Bacteroidetes phyla. The SBS-ALD metabolome included important alterations in the microbial metabolism of amino acids and the mitochondrial metabolism of branched chain amino acids. Correlation analysis defined microbe-metabolite clustering patterns unique to SBS-ALD and identified a metabolite panel that correlates with dysbiosis of the gut microbiome in SBS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intestinal dysbiosis in children with short bowel syndrome is associated with impaired outcome

BACKGROUND The composition of the intestinal microbiota seems to be an important factor in determining the clinical outcome in children with short bowel syndrome (SBS). Alterations in the microbiota may result in serious complications such as small bowel bacterial overgrowth (SBBO) and intestinal mucosal inflammation that lead to prolonged parenteral nutrition (PN) dependency with subsequently ...

متن کامل

Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome

BACKGROUND & AIMS Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing S...

متن کامل

A Twist in the Tale of a Pig Model of Short-Bowel Syndrome

hort-bowel syndrome (SBS) occurs after a long surSgical resection of small intestine. This results in malabsorption of nutrients, especially lipids, and is associated with the development of liver disease. It is particularly serious in infants. The contributions of altered lipid metabolism, bile acid physiology, dysbiosis, and supplemental enteral or parenteral nutrition to the development of t...

متن کامل

Dysbiosis of the gut microbiota in disease

There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity.

متن کامل

Disruptions of the intestinal microbiome in necrotizing enterocolitis, short bowel syndrome, and Hirschsprung’s associated enterocolitis

Next generation sequencing techniques are currently revealing novel insight into the microbiome of the human gut. This new area of research seems especially relevant for neonatal diseases, because the development of the intestinal microbiome already starts in the perinatal period and preterm infants with a still immature gut associated immune system may be harmed by a dysproportional microbial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017